16 research outputs found

    Discrete-continuum hybrid modelling of flowing and static regimes

    Get PDF
    Bulk handling, transport and processing of granular materials and powders are fundamental operations in a wide range of industrial processes and geophysical phenomena. Particulate materials, which can be found in nature, are usually characterized by grain size which can range across several scales: from nanometre to the order of metre. Depending on the volume fraction and shear strain conditions, granular materials can have different behaviours and often can be expressed as a new state of matter with properties of solids, liquids and gases. For the above reasons both the experimental and the numerical analysis of granular media is still a difficult task and the prediction of their dynamic behaviour still represents nowadays an important challenge. The main goal of the current thesis is the development of a numerical strategy with the objective of studying the macroscopic behaviour of dry granular flows in quasi-static and dense flow regime. The problem is defined in a continuum mechanics framework and the balance laws, which govern the behaviour of a solid body, are solved by using a Lagrangian formalism. The Material Point Method (MPM), a particle-based method, is chosen due to its features which make it very suitable for the solution of large deformation problems involving complex history-dependent constitutive laws. An irreducible formulation using a Mohr-Coulomb constitutive law, which takes into account geometric non-linearities, is implemented within the MPM framework. The numerical strategy is verified and validated against several benchmark tests and experimental results, available in the literature. Further, a mixed formulation is implemented for the solution of granular flows that undergo undrained conditions. Finally, the developed MPM strategy is used and tested against the experimental study performed for the characterization of the flowability of several types of sucrose. The capabilities and limitations of this numerical strategy are observed and discussed and the bases for future research are outlined.El manejo, el transporte y el procesamiento de materiales granulares y polvo son operaciones fundamentales en una amplia gama de procesos industriales y de fenómenos geofísicos. Los materiales particulados, que pueden ser encontrados en la naturaleza, generalmente están caracterizados por el tamaño del grano, que puede variar entre varios órdenes de magnitud: desde el nanómetro hasta el orden de los metros. En función de las condiciones de fracción volumétrica y de deformación de cortante, los materiales granulares pueden tener un comportamiento diferente y a menudo pueden expresarse como un nuevo estado de materia con propiedades de sólidos, de líquidos y de gases. A causa de las observaciones antes mencionadas, tanto el análisis experimental como la simulación numérica de medios granulares es aún una tarea compleja y la predicción de su comportamiento dinámico representa aun hoy día un desafío muy importante. El principal objetivo de esta tesis es el desarrollo de una estrategia numérica con la finalidad de estudiar el comportamiento macroscópico de los flujos de medios granulares secos en régimen cuasiestático y en régimen dinámico. El problema está definido en el contexto de la mecánica de medios continuos y las leyes de equilibrio, que gobiernan el comportamiento del cuerpo sólido, y están resueltas mediante un formalismo Lagrangiano. El Metodo de los Puntos Materiales (MPM), método basado en el concepto de discretización del cuerpo sólido en partículas, está elegido por sus características que lo convierten en una técnica apropiada para resolver problemas de grandes deformaciones donde se tienen que utilizar complejas leyes constitutivas. En el marco del MPM está implementada una formulación irreducible que usa una ley constitutiva de Mohr-Coulomb y que tiene en cuenta no-linealidades geométricas. La estrategia numérica está verificada y validada con respecto a tests de referencia y resultados experimentales disponibles en la literatura. Además, se ha implementado una formulación mixta para resolver casos de flujo granular en condiciones no drenadas. Por último, la estrategia MPM desarrollada está utilizada y evaluada con respecto a un estudio experimental realizado para la caracterización de la fluidez de diferentes tipologías de azúcar. También se presentan unas observaciones y discusión sobre las capacidades y las limitaciones de esta herramienta numérica y se describen las bases de una investigación futura

    Discrete-continuum hybrid modelling of flowing and static regimes

    Get PDF
    Bulk handling, transport and processing of granular materials and powders are fundamental operations in a wide range of industrial processes and geophysical phenomena. Particulate materials, which can be found in nature, are usually characterized by grain size which can range across several scales: from nanometre to the order of metre. Depending on the volume fraction and shear strain conditions, granular materials can have different behaviours and often can be expressed as a new state of matter with properties of solids, liquids and gases. For the above reasons both the experimental and the numerical analysis of granular media is still a difficult task and the prediction of their dynamic behaviour still represents nowadays an important challenge. The main goal of the current thesis is the development of a numerical strategy with the objective of studying the macroscopic behaviour of dry granular flows in quasi-static and dense flow regime. The problem is defined in a continuum mechanics framework and the balance laws, which govern the behaviour of a solid body, are solved by using a Lagrangian formalism. The Material Point Method (MPM), a particle-based method, is chosen due to its features which make it very suitable for the solution of large deformation problems involving complex history-dependent constitutive laws. An irreducible formulation using a Mohr-Coulomb constitutive law, which takes into account geometric non-linearities, is implemented within the MPM framework. The numerical strategy is verified and validated against several benchmark tests and experimental results, available in the literature. Further, a mixed formulation is implemented for the solution of granular flows that undergo undrained conditions. Finally, the developed MPM strategy is used and tested against the experimental study performed for the characterization of the flowability of several types of sucrose. The capabilities and limitations of this numerical strategy are observed and discussed and the bases for future research are outlined.El manejo, el transporte y el procesamiento de materiales granulares y polvo son operaciones fundamentales en una amplia gama de procesos industriales y de fenómenos geofísicos. Los materiales particulados, que pueden ser encontrados en la naturaleza, generalmente están caracterizados por el tamaño del grano, que puede variar entre varios órdenes de magnitud: desde el nanómetro hasta el orden de los metros. En función de las condiciones de fracción volumétrica y de deformación de cortante, los materiales granulares pueden tener un comportamiento diferente y a menudo pueden expresarse como un nuevo estado de materia con propiedades de sólidos, de líquidos y de gases. A causa de las observaciones antes mencionadas, tanto el análisis experimental como la simulación numérica de medios granulares es aún una tarea compleja y la predicción de su comportamiento dinámico representa aun hoy día un desafío muy importante. El principal objetivo de esta tesis es el desarrollo de una estrategia numérica con la finalidad de estudiar el comportamiento macroscópico de los flujos de medios granulares secos en régimen cuasiestático y en régimen dinámico. El problema está definido en el contexto de la mecánica de medios continuos y las leyes de equilibrio, que gobiernan el comportamiento del cuerpo sólido, y están resueltas mediante un formalismo Lagrangiano. El Metodo de los Puntos Materiales (MPM), método basado en el concepto de discretización del cuerpo sólido en partículas, está elegido por sus características que lo convierten en una técnica apropiada para resolver problemas de grandes deformaciones donde se tienen que utilizar complejas leyes constitutivas. En el marco del MPM está implementada una formulación irreducible que usa una ley constitutiva de Mohr-Coulomb y que tiene en cuenta no-linealidades geométricas. La estrategia numérica está verificada y validada con respecto a tests de referencia y resultados experimentales disponibles en la literatura. Además, se ha implementado una formulación mixta para resolver casos de flujo granular en condiciones no drenadas. Por último, la estrategia MPM desarrollada está utilizada y evaluada con respecto a un estudio experimental realizado para la caracterización de la fluidez de diferentes tipologías de azúcar. También se presentan unas observaciones y discusión sobre las capacidades y las limitaciones de esta herramienta numérica y se describen las bases de una investigación futura.Postprint (published version

    Comparison of a Material Point Method and a Galerkin meshfree method for the simulation of cohesive-frictional materials

    Get PDF
    The simulation of large deformation problems, involving complex history-dependent constitutive laws, is of paramount importance in several engineering fields. Particular attention has to be paid to the choice of a suitable numerical technique such that reliable results can be obtained. In this paper, a Material Point Method (MPM) and a Galerkin Meshfree Method (GMM) are presented and verified against classical benchmarks in solid mechanics. The aim is to demonstrate the good behavior of the methods in the simulation of cohesive-frictional materials, both in static and dynamic regimes and in problems dealing with large deformations. The vast majority of MPM techniques in the literature are based on some sort of explicit time integration. The techniques proposed in the current work, on the contrary, are based on implicit approaches, which can also be easily adapted to the simulation of static cases. The two methods are presented so as to highlight the similarities to rather than the differences fromPeer ReviewedPostprint (published version

    A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-018-1647-9In this work a stabilized mixed formulation for the solution of non-linear solid mechanics problems in nearly-incompressible conditions is presented. In order to deal with high material deformation, an implicit Material Point Method is chosen. Such choice allows avoiding the classical limitations of the Finite Element Method, e.g., element tangling and extreme mesh distortion. The proposed mixed formulation, with displacement and pressure as primary variables, is tested through classical benchmarks in solid and geo-mechanics where a Neo-Hookean, a J2 and a Mohr-Coulomb plastic law are employed. Further, the stabilized mixed formulation is compared with a displacement-based formulation to demonstrate how the proposed approach gets better results in terms of accuracy, not only when incompressible materials are simulated, but also in the case of compressible ones.Peer ReviewedPostprint (author's final draft

    Discrete-continuum hybrid modelling of flowing and static regimes

    No full text
    Bulk handling, transport and processing of granular materials and powders are fundamental operations in a wide range of industrial processes and geophysical phenomena. Particulate materials, which can be found in nature, are usually characterized by grain size which can range across several scales: from nanometre to the order of metre. Depending on the volume fraction and shear strain conditions, granular materials can have different behaviours and often can be expressed as a new state of matter with properties of solids, liquids and gases. For the above reasons both the experimental and the numerical analysis of granular media is still a difficult task and the prediction of their dynamic behaviour still represents nowadays an important challenge. The main goal of the current thesis is the development of a numerical strategy with the objective of studying the macroscopic behaviour of dry granular flows in quasi-static and dense flow regime. The problem is defined in a continuum mechanics framework and the balance laws, which govern the behaviour of a solid body, are solved by using a Lagrangian formalism. The Material Point Method (MPM), a particle-based method, is chosen due to its features which make it very suitable for the solution of large deformation problems involving complex history-dependent constitutive laws. An irreducible formulation using a Mohr-Coulomb constitutive law, which takes into account geometric non-linearities, is implemented within the MPM framework. The numerical strategy is verified and validated against several benchmark tests and experimental results, available in the literature. Further, a mixed formulation is implemented for the solution of granular flows that undergo undrained conditions. Finally, the developed MPM strategy is used and tested against the experimental study performed for the characterization of the flowability of several types of sucrose. The capabilities and limitations of this numerical strategy are observed and discussed and the bases for future research are outlined.El manejo, el transporte y el procesamiento de materiales granulares y polvo son operaciones fundamentales en una amplia gama de procesos industriales y de fenómenos geofísicos. Los materiales particulados, que pueden ser encontrados en la naturaleza, generalmente están caracterizados por el tamaño del grano, que puede variar entre varios órdenes de magnitud: desde el nanómetro hasta el orden de los metros. En función de las condiciones de fracción volumétrica y de deformación de cortante, los materiales granulares pueden tener un comportamiento diferente y a menudo pueden expresarse como un nuevo estado de materia con propiedades de sólidos, de líquidos y de gases. A causa de las observaciones antes mencionadas, tanto el análisis experimental como la simulación numérica de medios granulares es aún una tarea compleja y la predicción de su comportamiento dinámico representa aun hoy día un desafío muy importante. El principal objetivo de esta tesis es el desarrollo de una estrategia numérica con la finalidad de estudiar el comportamiento macroscópico de los flujos de medios granulares secos en régimen cuasiestático y en régimen dinámico. El problema está definido en el contexto de la mecánica de medios continuos y las leyes de equilibrio, que gobiernan el comportamiento del cuerpo sólido, y están resueltas mediante un formalismo Lagrangiano. El Metodo de los Puntos Materiales (MPM), método basado en el concepto de discretización del cuerpo sólido en partículas, está elegido por sus características que lo convierten en una técnica apropiada para resolver problemas de grandes deformaciones donde se tienen que utilizar complejas leyes constitutivas. En el marco del MPM está implementada una formulación irreducible que usa una ley constitutiva de Mohr-Coulomb y que tiene en cuenta no-linealidades geométricas. La estrategia numérica está verificada y validada con respecto a tests de referencia y resultados experimentales disponibles en la literatura. Además, se ha implementado una formulación mixta para resolver casos de flujo granular en condiciones no drenadas. Por último, la estrategia MPM desarrollada está utilizada y evaluada con respecto a un estudio experimental realizado para la caracterización de la fluidez de diferentes tipologías de azúcar. También se presentan unas observaciones y discusión sobre las capacidades y las limitaciones de esta herramienta numérica y se describen las bases de una investigación futura

    Discrete-continuum hybrid modelling of flowing and static regimes

    No full text
    Bulk handling, transport and processing of granular materials and powders are fundamental operations in a wide range of industrial processes and geophysical phenomena. Particulate materials, which can be found in nature, are usually characterized by grain size which can range across several scales: from nanometre to the order of metre. Depending on the volume fraction and shear strain conditions, granular materials can have different behaviours and often can be expressed as a new state of matter with properties of solids, liquids and gases. For the above reasons both the experimental and the numerical analysis of granular media is still a difficult task and the prediction of their dynamic behaviour still represents nowadays an important challenge. The main goal of the current thesis is the development of a numerical strategy with the objective of studying the macroscopic behaviour of dry granular flows in quasi-static and dense flow regime. The problem is defined in a continuum mechanics framework and the balance laws, which govern the behaviour of a solid body, are solved by using a Lagrangian formalism. The Material Point Method (MPM), a particle-based method, is chosen due to its features which make it very suitable for the solution of large deformation problems involving complex history-dependent constitutive laws. An irreducible formulation using a Mohr-Coulomb constitutive law, which takes into account geometric non-linearities, is implemented within the MPM framework. The numerical strategy is verified and validated against several benchmark tests and experimental results, available in the literature. Further, a mixed formulation is implemented for the solution of granular flows that undergo undrained conditions. Finally, the developed MPM strategy is used and tested against the experimental study performed for the characterization of the flowability of several types of sucrose. The capabilities and limitations of this numerical strategy are observed and discussed and the bases for future research are outlined.El manejo, el transporte y el procesamiento de materiales granulares y polvo son operaciones fundamentales en una amplia gama de procesos industriales y de fenómenos geofísicos. Los materiales particulados, que pueden ser encontrados en la naturaleza, generalmente están caracterizados por el tamaño del grano, que puede variar entre varios órdenes de magnitud: desde el nanómetro hasta el orden de los metros. En función de las condiciones de fracción volumétrica y de deformación de cortante, los materiales granulares pueden tener un comportamiento diferente y a menudo pueden expresarse como un nuevo estado de materia con propiedades de sólidos, de líquidos y de gases. A causa de las observaciones antes mencionadas, tanto el análisis experimental como la simulación numérica de medios granulares es aún una tarea compleja y la predicción de su comportamiento dinámico representa aun hoy día un desafío muy importante. El principal objetivo de esta tesis es el desarrollo de una estrategia numérica con la finalidad de estudiar el comportamiento macroscópico de los flujos de medios granulares secos en régimen cuasiestático y en régimen dinámico. El problema está definido en el contexto de la mecánica de medios continuos y las leyes de equilibrio, que gobiernan el comportamiento del cuerpo sólido, y están resueltas mediante un formalismo Lagrangiano. El Metodo de los Puntos Materiales (MPM), método basado en el concepto de discretización del cuerpo sólido en partículas, está elegido por sus características que lo convierten en una técnica apropiada para resolver problemas de grandes deformaciones donde se tienen que utilizar complejas leyes constitutivas. En el marco del MPM está implementada una formulación irreducible que usa una ley constitutiva de Mohr-Coulomb y que tiene en cuenta no-linealidades geométricas. La estrategia numérica está verificada y validada con respecto a tests de referencia y resultados experimentales disponibles en la literatura. Además, se ha implementado una formulación mixta para resolver casos de flujo granular en condiciones no drenadas. Por último, la estrategia MPM desarrollada está utilizada y evaluada con respecto a un estudio experimental realizado para la caracterización de la fluidez de diferentes tipologías de azúcar. También se presentan unas observaciones y discusión sobre las capacidades y las limitaciones de esta herramienta numérica y se describen las bases de una investigación futura

    Discrete-continuum hybrid modelling of flowing and static regimes

    No full text
    Bulk handling, transport and processing of granular materials and powders are fundamental operations in a wide range of industrial processes and geophysical phenomena. Particulate materials, which can be found in nature, are usually characterized by a grain size which can range across several scales: from nanometre to the order of metre. Depending on the volume fraction and on the shear strain conditions, granular materials can have different behaviours and often can be expressed as a new state of matter with properties of solids, liquids and gases. For the above reasons, both the experimental and the numerical analysis of granular media is still a difficult task and the prediction of their dynamic behaviour still represents, nowadays, an important challenge. The main goal of the current monograph is the development of a numerical strategy with the objective of studying the macroscopic behaviour of dry granular flows in quasi-static and dense flow regime. The problem is defined in a continuum mechanics framework and the balance laws, which govern the behaviour of a solid body, are solved by using a Lagrangian formalism. The Material Point Method (MPM), a particle-based method, is chosen due to its features which make it very suitable for the solution of large deformation problems involving complex history-dependent constitutive laws. An irreducible formulation using a Mohr-Coulomb constitutive law, which takes into account geometric non-linearities, is implemented within the MPM framework. The numerical strategy is verified and validated against several benchmark tests and experimental results, available in the literature. Further, a mixed formulation is implemented for the solution of granular flows that undergo undrained conditions. Finally, the developed MPM strategy is used and tested against the experimental study performed for the characterization of the flowability of several types of sucrose. The capabilities and limitations of this numerical strategy are observed and discussed and the bases for future research are outlined

    Soil-structure interaction simulation of landslides impacting a structure using an implicit material point method

    No full text
    Global warming and climate changes have been one of the many causes that triggered numerous catastrophic landslide and mudflow disasters in the past twenty years. The increase of earth temperature has contributed to the increase of precipitation and undisputedly affected the soil slope stability, which by further may cause landslides in various scale and speed. This large soil deformation phenomenon carries along huge rocks and heavy materials that often results in extensive damage in civil infrastructures both directly or indirectly. Coming with this motivation, a soil-structure interaction simulation based on the implicit material point method (MPM) has been implemented within the Kratos Multiphysics framework for the objective of predicting structural deformation and, furthermore, structural failure caused by environmental flow problems such as landslides. In the current study, the soil is modeled using a non-associated Mohr-Coulomb-based elastoplastic law, while the structure is modeled as elastic and Neo-Hookean hyperelastic materials. In the numerical tests conducted, the equivalent stress and displacement measured on both rigid and flexible structures show a good qualitative agreement. In the future works, a more adequate consideration of the soil and structural model will be investigated before conducting a real-scale landslide simulation
    corecore